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Abstract

A uni®ed formulation for studying stresses in rotating polarly orthotropic discs, shallow shells and conical shells
is presented. The main focus of this paper is on the examination of singularities when tangential modulus of
elasticity (Ey) is smaller than the radial modulus (Er). The order of the singularity is extracted by expressing the

solutions in terms of modi®ed bessel function with complex argument. The order of the singularity is shown to be
� ���������������������

Ey=Er ÿ 1
p � in all the three cases studied here. There is no singularity present when Ey=Err1. Theoretical results
are compared with FEM calculations in all the cases. # 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a radius of shallow shell
Dy Eyh

3=12�1ÿ nyrnry� ¯exular rigidity of the plate in tangential direction
Dr Erh

3=12�1ÿ nyrnry� ¯exular rigidity of the plate in radial direction
Ey Young's modulus of elasticity in tangential direction
Er Young's modulus of elasticity in radial direction
h thickness of the shell
Iv�x�, Kv�x� Modi®ed Bessel's function of vth order and imaginary argument
l characteristic length � �����

ah
p

=4
������������������������������
12b�1ÿ nyrnry�

p
�My normalised tangential bending moment �My=�rw2r3c�
�Mr normalised radial bending moment �Mr=�rw2r3c�
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1. Introduction

Modern design of shells for defence and aerospace applications are increasingly based on the use of
composite materials. Composite materials are anisotropic. Particularly, orthotropic design of composites
is not only practically viable but also analytically more tractable. However, the resulting analysis
sometimes leads to singularities in the stress distribution. Singularities arising on account of geometrical
and material discontinuities, for instance, sharp corners or a sharp wedge-like inclusion, are well known.
Singularities have been extensively studied by researchers in fracture and contact mechanics.

The purpose of this paper is to highlight the existence of singularities in continuous homogeneous
rotating orthotropic discs and shells. This feature is not observed in the corresponding isotropic case.
Singularities are also not present when the tangential modulus of elasticity in orthotropic discs exceeds
the radial modulus. In other words, the anisotropic parameter de®ned as the ratio of tangential to radial
modulus b � Ey=Er plays a signi®cant role in this analysis. This aspect was mentioned by Tang (1969)
for rotating anisotropic discs. However, the same feature is also common to rotating orthotropic
shallow shells and conical shells as described in this paper. As observed by Tang (1969), singularities can
be avoided by tailoring the elastic properties radially (Jain et al., 1999), or by varying the thickness of
the disc.

�My normalised bending moment �My=�rw2r3c�
My bending moment per unit length in tangential direction
Mr bending moment per unit length in radial direction
My bending moment per unit length in conical shell
�Ny normalised tangential membrane force per unit length � Ny=�rw2r2c�
�Nr normalised radial membrane force per unit length � Nr=�rw2r2c�
�Ny normalised membrane force per unit length � Ny=�rw2r2c�
Ny tangential membrane force per unit length
Nr radial membrane force per unit length in shallow shell
Ny radial membrane force per unit length in conical-shell
p load intensity in normal direction � rw2hr2=a2

pr load intensity in meridional direction 1rw2hr�1ÿ r2=2a2�
Qr shearing force in radial direction
Qv vertical shearing force
Qy shearing force in tangential direction
�r non-dimensional radius � r=rc
w angular velocity in rad/s
x nondimensional parameter = r/l.

Greek symbols
b anisotropic parameter � Ey=Er

er radial strain
ey tangential strain
nyr Poisson's ratio
nry Poisson's ratio
r mass density of material
r4 biharmonic operator � ��d2=dr2� � �1=r��d=dr��2
O body force potential � ÿ � pr drfor shallow shell, ÿrw2hy2 sin2 a=2 for conical shell
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Most of the work in centrifugal bodyforce axi-symmetric problems pertain to isotropic materials.
Examples of rotating discs and shells of uniform and variable thickness include the work of FluÈ gge
(1973) and Timoshenko and Woinowsky-Krieger (1989). The general formulation for an isotropic shell
was given by Kraus (1967) for structural applications. Rotating discs and shells constitute a critical
segment in the design of gas turbine and compressor discs, nose cones of commercial and military
aircraft. Stresses are sensitive to small changes in apical cone angle in rotating conical shells (Meriam,
1943). Extensive work has been done on rotating discs with varying thickness and density. The variable
density approach can be used to predict displacements and stresses in rotating shallow shell with
variable thickness (Simha et al., 1994). A number of papers on isotropic plates and shells discuss the
singularity for concentrated loads (Dundurs and Jahanshahi, 1965; Lukasiewicz, 1967; Sanders, 1970).
These investigations di�er from the present study on singularities arising from anisotropic material
properties.

GuÈ ven (1992) investigated the in¯uence of a radial density gradient on elastic-plastic stresses for a
linear strain hardening material. Later, GuÈ ven (1998) showed that the growth of plastic region decreases
signi®cantly upon increasing the values of the thickness parameter. You et al. (1997) determined the
stresses and displacement in rotating discs with non-linear strain hardening by assuming a polynomial
stress-plastic strain relation using perturbation.

Extensive work has been done on anisotropic rotating disc with varying thickness and density.
Murthy and Sherbourne (1970) obtained complete analytical solutions for rotating anisotropic annular
discs with variable thickness and a disc mounted on a circular rigid shaft. Later, they (Sherbourne and
Murthy, 1974) used dynamic relaxation technique for analysing anisotropic discs with variable pro®les.
This was followed by a postbuckling analysis of orthotropic plates by Sherbourne and Pandey (1992)
giving due recognition for the in¯uence of singularities. The in¯uence of material density on the stresses
and displacement of a rotating polar orthotropic circular disc was investigated by Reddy and Srinath
(1974) and Chang (1976). Leissa and Vagins (1978) showed how to tailor elastic moduli to eliminate
undesirable stress concentrations in annular orthotropic discs. Recently, Galmudi and Dvorkin (1995)
highlighted the peculiarities of stress distribution in hollow anisotropic cylinders subjected to external
pressure. This work was elaborated further by Horgan and Baxter (1996) for anisotropic rotating disk
and spherical shells. Deployable solar panels and antennae for space applications demand light weight
construction, and composites may substitute conventional designs in future missions. Regarding ground
application, ¯ywheels and large bevel gears represent possible candidates for exploiting composite
materials for their construction. The chief attraction for using composites lies in their directional
strength and elastic properties that can be tailored by the designer to meet a speci®c requirement. It is
also possible to manufacture composite components with spatially varying properties. Despite all these
attractive features, theoretical analyses of rotating discs and shells have been somewhat neglected owing
to the widespread use of numerical methods in modern engineering design. Ideally, numerical analysis
should supplement and support theoretically derived notions and experimental observation. Singularities
demand special theoretical attention before numerical implementation.

Formulation of axi-symmetric problems for orthotropic materials follows the same procedure as for
isotropic materials. However, in general, the solution for the governing di�erential equations becomes
much more di�cult. Consequently, the analysis is generally con®ned to shallow shells, conical shells,
and, of course, ¯at plates. Moreover, for shells, the elastic properties and the shell thickness are kept
constant. The governing equations are then solved to satisfy the boundary conditions.

Singularities occur in the case of solid discs and shells. This existence of singularities is also
demonstrated using a commercial FEM software although the order of the singularity is not determined.
The singularity order is a very important parameter in engineering design. Theoretical analysis alone can
provide the resolution of the order of singularities. Hence, the main focus of this paper is on theoretical
analysis of rotating orthotropic discs and shells. With this introduction, Section 2 provides the
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formulation and result for a rotating orthotropic ¯at disc. In this section on ¯at discs, it will be shown
that both radial and tangential stresses become in®nite at the centre of the disc when b < 1. Further, the
order of the singularity is shown to be

���
b

p ÿ 1. A surprising result for b > 1 concerns the simultaneous
vanishing of radial and tangential stresses at the centre of the disc. For an isotropic disc (b � 1), it may
be recalled that the stresses are ®nite and equal. Another important issue addressed in this section
pertains to the correct choice for the singularity order. It is found that the analysis gives rise to two
singularities of which only one is correct. This selection leads to a ®nite strain energy as will be proved
in this section. This preliminary analysis on discs guides further investigation on shells.

The analysis of a rotating shallow shell is presented in Section 3 along with results. As in the case of
rotating discs, stresses become singular at the center for b < 1. Surprisingly, the order of the singularity
remains

���
b

p ÿ 1 as in a ¯at disc. In the limit of an in®nite radius of curvature for the shallow shell,
results in Section 2 for the ¯at disc are recovered for stresses.

Finally Section 4 deals with a rotating orthotropic conical shell. In this case also, the results are
controlled by b. Thus, in all the three cases, the singularity order is (

���
b

p ÿ 1).

2. Flat disc formulation

The following analysis is based on anisotropic theory of elasticity with stress-strain relations obeying
generalized Hooke's law (Lekhnitskii, 1981). It is assumed that the principal axes of anisotropy coincide
with radial and tangential direction of the disc. The formulation used for the ¯at disc sets the general
procedure for shells in the later sections.

The basic di�erential equation of equilibrium for a rotating disc is

d�rNr �
dr
ÿNy � rw2hr2 � 0: �1�

The strain±displacement relations are�
er
ey

�
�
�

du=dr
u=r

�
�2�

The strain±compatibility relation is

d

dr
�rey � � er �3�

The stress±strain relation for orthotropic material (Lekhnitskii, 1981)�
er
ey

�
� 1

h

�
1 ÿnry
ÿnyr 1

��
Nr=Er

Ny=Ey

�
�4�

Assuming Nr and Ny to be given by a function F de®ned as

"
Nr

Ny

#
�

26664
1

r

dF

dr
� O

d2F

dr2
� O

37775 �5�

where O � ÿrw2hr2=2 is the body force potential. From eqns (1)±(5) the governing di�erential equation
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for F emerges as

r
d3F

dr3
� d2F

dr2
ÿ b

r

dF

dr
� �bÿ 1�O� �nyr ÿ 1�rdO

dr
�6�

Di�erentiating eqn (6) provides a general structure for the governing di�erential equation as

L�F� � d4F

dr4
� 2

r

d3F

dr3
ÿ b

r2
d2F

dr2
� b

r3
dF

dr
� �b� nyr ÿ 2�1

r

dO
dr
� �nyr ÿ 1�d

2O
dr2

�7�

The above form of eqn (7) carries over to shells as described later. Solving eqn (7) will result in the
following equation for b 6� 1

F � K1r
��
b
p
�1 � K2r

ÿ
��
b
p
�1 � �3ÿ 2nyr ÿ b�

8�9ÿ b� rw2hr4 � B1 �8�

The membrane stresses obtained from eqn (8) in a rotating disc are

Nr �C1r
��
b
p
ÿ1 � C2r

ÿ
��
b
p
ÿ1 ÿ �3� nyr �

�9ÿ b� rw
2hr2

Ny �C1

���
b

p
r
��
b
p
ÿ1 ÿ

���
b

p
C2r
ÿ

��
b
p
ÿ1 ÿ �b� 3nyr �

�9ÿ b� rw2hr2 �9�

A non-dimensional form of stresses is obtained upon dividing by rw2hr2c

�Nr � �C1 �r
��
b
p
ÿ1 � �C2 �rÿ

��
b
p
ÿ1 ÿ �3� nyr �

�9ÿ b� �r2

�Ny � �C1

���
b

p
�r
��
b
p
ÿ1 ÿ

���
b

p
�C2 �rÿ

���
b

p
ÿ 1ÿ �b� 3nyr �

�9ÿ b� �r2 �10�

From the result, it is clear that the order of singularity in the stresses is either
���
b

p ÿ 1 or ÿ � ���
b

p � 1�.
To select the correct answer we examine the strain energy stored in a solid disc of radius rc. The strain
energy is given by

Fig. 1. Rotating anisotropic disc.
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U � 1

h

�rc
0

ÿ
N2

r � bN 2
y ÿ 2NrNynyr

�
2pr dr �11�

The singularity of order ÿ� ���
b

p � 1� leads to an in®nite amount of strain energy in the disc. This is not
permissible. Therefore, the constant C2 in eqn (9) must be set equal to zero. A similar situation is also
encountered in the case of shells. The remaining constant C1 is determined by applying the boundary
condition Nr � 0 at r � rc. This leads to �C1 � �3� nyr�=�9ÿ b�.

As a numerical illustration of the above ideas, stresses in a 200 mm radius and 10 mm thick
anisotropic disc (Fig. 1) is considered for three values of the anisotropic parameter b � 1=2, 1 and 2.
The anisotropic elastic constants used here are: Ey � 210 GPa; r=7800 kg/m3; nyr � 0:3. The results
are also obtained using a commercial FEM software. Figure 4 shows the variation of �Nr and �N y

respectively. The formation of the singularity is evident when b � 1=2. The order of the singularity is
1=

���
2
p ÿ 1. There is no singularity present for be 1. Singularity is observed only when b � 0:5 at the

Fig. 2. Rotating shallow shell con®guration.

Fig. 3. Rotating conical shell con®guration.
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Fig. 4. Comparison of normalised radial stress (solid line) with FEM (dashed line) in rotating ¯at plate for (a) b � 2, (b) b � 1 and

(c) b � 0:5.
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centre of the disc. When b � 2, the centre of the disc is stress free ( �Nr � �N y � 0). The isotropic case
(b � 1) gives equal values for �Nr and �Ny.

3. Shallow shell formulation

We follow the general procedure outlined in FluÈ gge (1973) and Timoshenko and Woinowosky-Krieger
(1989).

The di�erential equations of equilibrium for rotating shallow shell are

d�rNr �
dr
ÿNy ÿ r

a
Qr � rpr � 0 �12�

d�rQr �
dr
� r

a
�Nr �Ny� � rp � 0 �13�

d�rMr �
dr

ÿMy ÿ rQr � 0 �14�

The strains are

er � 1

hEr
�Nr ÿ nryNy� � dv

dr
ÿ w

a

ey � 1

hEy
�Ny ÿ nyrNr � � v

r
ÿ w

a
�15�

The bending moments are

Mr �ÿDr�wr � nyrwy� � ÿDr

�
d2w

dr2
� nyr

r

dw

dr

�
My �ÿDy�wy � nrywr � � ÿDy

�
1

r

dw

dr
� nry

d2w

dr2

�
�16�

Assuming pr � ÿdO=dr, O representing a radial body force potential, the force resultants per unit length are

Nr � 1

r

dF

dr
� O

Ny �d2F

dr2
� O �17�

Using eqn (15) the compatibility equation becomes

1

r2
d

dr

�
r2

dey
dr

�
ÿ 1

r

der
dr
� 1

a
r2w � 0 �18�

where r2 is Laplace di�erential operator

d2

dr2
� 1

r

d

dr
:
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Combining eqns (15) and (17) we arrive at the following fundamental equation for F and w:

L�F� � bhEr

a
r2w � ÿ�1ÿ nyr �r2O� �bÿ 1�

r

dO
dr

�19�

The second fundamental relation between F and w is obtained by substituting Qr from eqn (14) in eqn
(13).

d

dr

�
d�rMr �

dr
ÿMy

�
� r

a
�Nr �Ny� � rp � 0 �20�

Using eqns (16) and (17) in combination with eqn (20) gives

L�w� ÿ 1

aDr
r2F � 2O

aDr
� p

Dr
�21�

Equations (19) and (21) can be coupled together by multiplying eqn (19) by ÿl and adding together
yields:

L�wÿ lF� ÿ lbhEr

a
r2

�
w� a

lbhEraDr
F

�
� l�1ÿ nyr �r2O� 2O

aDr
� p

Dr
ÿ l
�bÿ 1�

r

dO
dr

�22�

Stipulating l � ÿ1=lbhErDr, eqn (22) can be written in terms of f � �wÿ lF � as

L�f� ÿ bhEr

a
lr2f � l�1ÿ nyr �r2O� 2O

Dra
� p

Dr
ÿ l

bÿ 1

r

dO
dr

�23�

In terms of c � df=dr eqn (23) becomes

d2c
dr2
� 1

r

dc
dr
ÿ
�
b
r2
� i

l2
c

�
� l

�
�1ÿ nyr �dO

dr
� �1ÿ b�O

r

�
� 2

r dra

�
Or dr� 1

rDr

�
pr� A2

r
�24�

where l � �����
ah
p

=4
������������������������������
12b�1ÿ nyrnry�

p
is a characteristic length.

A homogeneous solution of above equation is (McLachlan, 1955)

c � A3In
ÿ
i1=2r=l

�
� B3Kn

ÿ
i1=2r=l

�
�25�

where In and Kn are modi®ed Bessel functions of order n where n � ���
b

p
. A3 and B3 are complex

constants to be determined from the boundary conditions viz Nr �Mr � 0 at r � rc. The function In is
de®ned at r=0 whereas Kn is singular at r =0. Therefore, B3 and A2 must be set equal to zero for a
shallow shell.

Membrane and bending stresses from eqns (24) and (25) are

Nr �ÿ bhErl

a

�
a3

beinx

x
� b3

bernx

x

�
ÿ R1r

2 ÿ R2r
4 ÿ R3r

6 ÿ R4r
8 � O

Ny �ÿ bhErl

a

ÿ
a3bei

0
nx� b3ber

0
nx
�ÿ 3R1r

2 ÿ 5R2r
4 ÿ 7R3r

6 ÿ 9R4r
8 � O �26�
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Mr �ÿDr

�
a3
l

�
ber 0nx� nyr

bernx

x

�
ÿ b3

l

�
bei 0nx� nyr

beinx

x

�
� �3� nyr �Q1r

2 � �5� nyr �Q2r
4 � �7� nyr �Q3r

6 � �9� nyr �Q4r
8

�
My �ÿDy

�
a3
l

�
bernx

x
� nyrber 0nx

�
ÿ b3

l

�
beinx

x
� nyrbei 0nx

�
� �1� 3nry�Q1r

2 � �1� 5nry�Q2r
4 � �1� 7nry�Q3r

6 � �1� 9nry�Q4r
8

�
�27�

where x= r/l is dimensionless parameter, constants Qi and Ri are

Q1 � 0

R1 � 3ÿ bÿ 2nyr
�9ÿ b� O

Q2 � 2�3� nyr �
�9ÿ b��25ÿ b�

O
aDr

R2 � 5ÿ bÿ 4nyr
�25ÿ b�

O
4a2

Q3 � ÿ 5� b� 6nyr
�25ÿ b��49ÿ b�

O
6Dra3

R3 � ÿ�7ÿ bÿ 6nyr �
24�49ÿ b�

O
a4
� bhErQ2

a�49ÿ b�

Q4 � 1

�81ÿ b�
�

O
96Dra5

ÿ R3

aDr

�

R4 � ÿ1�1ÿ b� O
64a6

ÿ �1ÿ nyr � O
8a6
� bhEr

a
Q3

4. Conical shell formulation

We follow the general procedure outlined in FluÈ gge (1973) and Timoshenko and Woinowosky-Krieger
(1989).

The di�erential equations of equilibrium for conical shell are

d
ÿ
yNy

�
dy

ÿNy � rw2hy2 sin2 a � 0 �28�
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d
ÿ
yQy

�
dy

�Ny cot aÿ rw2hy2 sin a cos a � 0 �29�

d
ÿ
yMy

�
dy

ÿMy ÿ yQy � 0 �30�

The strains are

ey � 1

hEy

ÿ
Ny ÿ nyyNy

� � dv

dl

ey � 1

hEy

ÿ
Ny ÿ nyyNy

� � v

y
ÿ w cot a

a
: �31�

The bending moments are

My � ÿDy
ÿ
wy � nwy

� � ÿDy

 
d2w

dy2
� nyy

y

dw

dy

!

My � ÿDy
ÿ
wy � nwy

� � ÿDy

 
1

y

dw

dy
� nyy

d2w

dy2

!
: �32�

The force resultants are

Ny � 1

y

dF

dy
� O

Ny � d2F

dy2
� O �33�

where O�ÿrw2hy2 sin2 a=2 represents body force potential.
Using eqn (31) the compatibility equation becomes

y
d2ey
dy2
� 2

dey
dy
ÿ dey

dy
� d2w

dy2
cot a � 0 �34�

Combining eqns (31) and (33) in conjunction with eqn (34) we obtain the ®rst fundamental equation for
F and w:

d4F

dy4
� 2

y

d3F

dy3
ÿ b

y2
d2F

dy2
� b

y3
dF

dy
� cot ahEy

1

y

d2w

dy2
� ÿnyy ÿ 1

�d2O
dy2
� ÿb� nyy ÿ 2

�dO
dy

�35�

The second fundamental relation between F and w is obtained by substituting yQy from eqn (30) in eqn
(29).

d

dy

"
d
ÿ
yMy

�
dy

ÿMy

#
�Ny cot aÿ rw2hy2 sin a cos a � 0 �36�

Using eqns (32) and (33) in combination with eqn (36) gives
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d4w

dy4
� 2

y

d3w

dy3
ÿ b

y2
d2w

dy2
� b

y3
dw

dy
ÿ cot a

yDy

d2F

dy2
� cot a

yDy
Oÿ rw2hy sin a cos a

Dy
�37�

Multiplying eqn (35) by ÿl and adding eqns (35) and (37) yields:

L�wÿ lF� ÿ lhEy cot a
y

 
d2w

dy2
� 1

hEyyDyl
d2F

dy2

!
� ÿ2nyy � bÿ 3

�
rw2h sin2 alÿ 3rw2h sin a cos a

2Dy
y �38�

where L was de®ned earlier in eqn (7)

L � d4

dy4
� � � � � � 2

y

d3

dy3
� � � � � ÿ b

y2
d2

dy2
� � � � � � b

y3
d

dy
� � � � �

Stipulating ÿl � 1=lhEyDy and de®ning f � wÿ lF then eqn (38) becomes

L�f� ÿ lmc
y

d2f
dy2
� ÿ2nyy � bÿ 3

�
rw2h sin2 alÿ rw2h sin a cos a

3y

2Dy
�39�

where mc�
�������������������������������
12�1ÿ nyynyy�b

p
cot a=h:

In terms of c � df=dy, eqn (39) can be simpli®ed to

d2c
dy2
� 1

y

dc
dy
ÿ
�
b
y2
� imc

y

�
c � ÿ2nyy � bÿ 3

�
rw2h sin2 a

y

2
lÿ rw2 h sin a cos a

y2

2Dy
� A2

y
�40�

Finally, substituting Z � 2
�������
mcy
p

gives

d2c
dZ2
� 1

Z
dc
dZ
ÿ
�
4b
Z2
� i

�
c � f�Z� �41�

where

f�Z� �
ÿ
2nyy � bÿ 3

�
rw2h sin2 a

Z4

32m3c
lÿ rw2h sin a cos a

Z6

128Dym4c
� A2

Z2

Following, Hildebrand (1962), the complete solution of eqn (41) is

c � In

� �Z
xf �x�Kn�x� dx

�
� Kn

� �Z
xf �x�In�x� dx

�
� Ac3In�Z� � Bc3Kn�Z� �42�

In and Kn are modi®ed Bessel functions of order n where n � ������
4b

p
. Ac3 and Bc3 are complex constants to

be determined from the boundary condition. The function In is de®ned at Z � 0, whereas Kn�Z� is
singular at Z � 0. Therefore, Bc3 and A2 must be set equal to zero for a conical shell.

The membrane and bending stresses are

Ny � ÿtan a
�
4m2cDy

��
a3

bernZ
Z2
� b3

beinZ
Z2

�
�S

ÿ
cp

�� O

Ny � ÿ2mc tan a
ÿ
mcDy

��
a3

ber 0nZ
Z
� b3

bei 0nZ
Z

�
�S

�
dcp

dy

�
� O �43�
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My � ÿ2mcDy

"
a3

�
ber 0nZ
Z
� 2vyy

bernZ
Z2

�
ÿ b3

�
bei 0nZ
Z
� 2vyy

beinZ
Z2

�
�R

�
cp �

dcp

dy

�#

My � ÿDy
ÿ
2mc

�"
a3

�
2bernZ
Z2
� vyy

ber 0nZ
Z

�
ÿ b3

�
beinZ
Z2
� vyy

bei 0nZ
Z

�
�R

�
cp �

dcp

dy

�#
�44�

where R and S represent the real and imaginary part of

cp � In

��Z
xf �x�Kv�x� dx

�
� Kn

��Z
xf �x�In�x� dx

�
:

The order of the singularity is controlled by In�Z� for b < 1. The function In�Z� can be expanded as

In�Z� �
Xr�1
r�0

�
Z
2

�n�2r

Gn�r�1r!
� Zn

2nGn�1
� Zn�2

2n�2Gn�2
� � � � �45�

The singularity is now controlled by terms in eqn (43) for the expansions of bernZ and beibZ. In order to
bring out the singularity order, Ny is examined as follows

Ny0
bernZ
Z2

0Zn

Z2
0Z2

���
b

p
ÿ 20y

���
b

p
ÿ 1 �46�

Once again when, b < 1, the stresses become singular as in the previous case. It is interesting to note
that the order of the singularity is again

���
b

p ÿ 1 as in the previous case. An unexpected result in the case
of conical shells is the development of a state of compression near the apex for cone angles below 858.
However, it should be recalled the shell theories do not give correct results near the apex. Therefore, the
singularity analysis presented here gives only qualitative representation. For larger cone angles
approaching 908 the stresses predicted by the conical shell analysis become tensile, and ®nally merge
with ¯at plat results for a � 908. The outer apex of the conical shell is unlikely to be a region of stress
singularity, but the inner apex of the conical shell could lead to singularities. This issue lies outside the
scope of this investigation.

A closed form solution is possible when b � 1 or 4. For these special cases the stresses and moments
are

Ny � ÿtan a
�
4m2cDy

��
a3

bernZ
Z2
� b3

beinZ
Z2

�
ÿ 4m2c tan aDy

ÿ
S2 � S4Z4

�
� O

Ny � ÿ2mc tan a
ÿ
mcDy

��
a3

ber 0nZ
Z
� b3

bei 0nZ
Z

�
ÿ 2m2c tan aDy

ÿ
2S2 � 6S4Z4

�
� O �47�

My � ÿ2mcDy

�
a3

�
ber 0nZ
Z
� 2nyy

bernZ
Z2

�
ÿ b3

�
bei 0nZ
Z
� 2nyy

beinZ
Z2

�
� 2

ÿ
2� nyy

�
T3Z3

�

My � ÿDy
ÿ
2mc

��
a3

�
2bernZ
Z2
� nyy

ber 0nZ
Z

�
ÿ b3

�
beinZ
Z2
� nyy

bei 0nZ
Z

�
� 2

ÿ
1� 2nyy

�
T3Z2

�
�48�

where
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S2 � �4ÿ b�k tan a
4m4cDy

S4 � ÿ k tan a
128

ÿ
3� nyy

�
m4cDy

T3 � ÿ k tan a
16m4cDy

and k � �3� nyy�rw2h cos2 a:

5. Results and discussions

The main results from this investigation are displayed in Figs 4 and 5, 6±9 and 10±13 for rotating
anisotropic disc, shallow shell and conical shell, respectively. The formation of singularity is clearly
evident in all the cases when b � 1=2. The order of this singularity is �1= ���

2
p ÿ 1�. No singularity is

present for be1. For the case of a conical shell of semiapical angle 708, the membrane stresses are
compressive in the apex region as shown in Figs 10±13. This feature of compressive membrane stresses
persists for a large range of cone angles. Calculations not included here show that tensile membrane
stresses begin to appear for cone angles larger than 858 depending upon the shell thickness. Singularities
are also detected by FEM although establishing the singularity order is di�cult. In general, FEM results
compare well with theoretical results except near the singularity. Establishing the correct order of the
singularity is important in performing strain energy calculations.

Rotating discs and shells present many interesting features when the material is orthotropic. Results
for isotropic plates and shells are widely known and have been discussed extensively in the literature.
Anisotropic discs have also been studied, but a detailed discussion on singularities has not been earlier
presented. This paper initiates such a discussion for rotating orthotropic discs and shells: A key ®nding
in this work relates to the order of the singularity which remains the same in all the cases. Further, the
singularity order depends only on the anisotropic parameter b � Ey=Er. For be1, there is no
singularity. For b < 1, a singularity of order � ���

b
p ÿ 1� is created at the center of rotating discs and

shells. This singularity could lead to dangerous conditions at the center by promoting growth of defects
in the form of cavities and cracks.

Holes can grow in rotating anisotropic plates and shells under special conditions. For hole growth to
occur, su�cient energy must be released from the original con®guration of a solid disc. This appears to
be possible when b < 1 because of singular stresses getting relieved at the center of the disc. For b > 1,
the center of the disc is a stress free region. In the case of conical shell the outer apex region could be in
a state of compression though the inner apex region is under tension. This issues lies outside the scope
of this paper which is based on a conventional shell theory.

6. Conclusions

Analysis of singularities in rotating discs and shells was described in this paper. A uni®ed
mathematical formulation is possible for rotating orthotropic discs, shallow shells and conical shells.
This formulation is valid within the approximation of thin plate and shell theories developed for
isotropic materials. Further, this formulation can be extended to non-axisymmetric problems. It is also
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Fig. 5. Comparison of normalised tangential stress (solid line) with FEM (dashed line) in rotating ¯at plate for (a) b � 2, (b) b � 1

and (c) b � 0:5.
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Fig. 6. Comparison of normalised membrane radial stress distribution between analytical (solid line) and FEM (dashed line) results

in rotating spherical shell for (a) b � 2, (b) b � 1 and (c) b � 0:5.
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Fig. 7. Comparison of normalised membrane tangential stress distribution between analytical (solid line) and FEM (dashed line)

results in rotating spherical shell for (a) b � 2, (b) b � 1 and (c) b � 0:5.
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Fig. 8. Comparison of normalised bending radial stress distribution between analytical (solid line) and FEM (dashed line) results in

rotating spherical shell for (a) b � 2, (b) b � 1 and (c) b � 0:5.
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Fig. 9. Comparison of normalised bending tangential stress distribution between analytical (solid line) and FEM (dashed line)

results in rotating spherical shell for (a) b � 2, (b) b � 1 and (c) b � 0:5.
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Fig. 10. Comparison of normalised membrane radial stress distribution between analytical (solid line) and FEM (dashed line)

results in rotating conical shell of semiapical angle a � 708: (a) b � 2:0, (b) b � 1 and (c) b � 0:5.
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Fig. 11. Comparison of normalised membrane tangential stress distribution between analytical (solid line) and FEM (dashed line)

results in rotating conical shell of semiapical angle a � 708: (a) b � 2:0, (b) b � 1 and (c) b � 0:5.
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Fig. 12. Comparison of normalised bending radial stress distribution between analytical (solid line) and FEM (dashed line) results

in rotating conical shell of semiapical angle a � 708: (a) b � 2:0, (b) b � 1 and (c) b � 0:5.
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Fig. 13. Comparison of normalised bending tangential stress distribution between analytical (solid line) and FEM (dashed line)

results in rotating conical shell of semiapical angle a � 708: (a) b � 2:0, (b) b � 1 and (c) b � 0:5.
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possible to obtain results for discs and shells with a central opening. In the case of a central opening,
however, both terms in the homogeneous solution should be retained to satisfy the boundary conditions.
As a consequence, singularities are not present in this case. Singularities are generated only on account
of anisotropy. The existence of such singularities was also illustrated using FEM. Results and discussion
presented in this paper highlight design problems that may be encountered in the use of composite
materials for rotating components. Singularity analysis needs further attention with regard to both
physics and mechanics.
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